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1. Introduction:
Central to the survival of prostate cancer (PCa) are the androgen receptor (AR) and 
phosphatidylinositol-3 kinase (PI3K)-AKT signaling pathways. Indeed, it has been reported that 
50-70% of human prostate cancers have mutations in PI3K signaling, often through loss of 
phosphatase and tensin homolog (PTEN). AR gene amplification is also frequently observed in 
hormone refractory prostate cancer (HRPC). Combined blockade of PI3K and AR signaling is a 
strong apoptotic stimulus for PCa cells and shows promise for future therapy [1, 2]. Intriguingly, AR 
and PI3K-AKT signaling are reciprocal inhibitors of one another, but can both promote cell survival 
and proliferation in PCa. Inhibition of a single pathway leads to alternative survival by the other. 
PI3K-AKT signaling activates mammalian target of rapamycin (mTOR) activity, a critical regulator of 
cell growth and global protein synthesis. mTOR is often hyper-activated in human cancer due to 
high metabolic demand of rapidly growing tumors. mTOR is a kinase that forms two distinct 
complexes in the cell referred to as mTOR complex (mTORC) 1 and -2. mTORC1 is a complex 
between mTOR, raptor and LST8, which functions to negatively regulate autophagy and promote 
protein synthesis [3]. mTORC2 is comprised of mTOR, rictor, LST8 and SIN1, whose best 
characterized functions are activating AKT and actin cytoskeletal organization [4]. Although a 
promising therapeutic target, rapamycin and rapalogs have only achieved modest clinical benefit, 
indicating PCa cells initiate compensatory mechanisms for survival even during decreased AR and 
mTOR signaling [5, 6]. Members of the CCAAT/enhancer binding protein (C/EBP) family are 
regulated through translation mechanisms by mTOR activity and have been linked to PCa survival 
and metastatic gene expression [7, 8]. C/EBPα and C/EBPβ (C/EBPα/β) are both transcription 
factors that function to exert cell cycle control and terminal differentiation. More recently, these 
factors have been recognized to suppress both the intrinsic and extrinsic apoptotic pathways 
through the expression of MCL-1, cFLIP, BCL-2 and BCL-xL [7, 9]. Both members are expressed as 
a single intronless transcript and truncated translational isoforms are generated by leaky ribosomal 
scanning. Activity of mTORC1, eukaryotic initiating factor 4E (eIF4E) or eIF2α causes the ribosome 
to skip the first AUG and initiate translation of the truncated isoforms [8, 10, 11]. Importantly, it has 
been shown that truncated and long C/EBPα/β isoforms have differential cellular function. 
Truncated C/EBPs lack transcriptional activation domains and suppress gene transcription by 
heterodimerizing with full-length isoforms or directly binding to target gene promoters and recruiting 
HDACs. the long isoforms activate transcription in most contexts and are more functionally linked 
with survival, cell cycle arrest and terminal differentiation. [10, 12, 13]. In contrast, truncated 
isoforms function to increase cell growth and act as silencers of tumor suppressor pathways. For 
example, mutation of the CEBPα gene locus, so that only the truncated p30 isoform is expressed, 
results in development of acute myeloid leukemia [15]. C/EBPβ LIP expression increases mammary 
epithelial cell proliferation and antagonizes anti-proliferative signals from TGF-β in breast cancer 
cells [16]. Because truncated C/EBPs antagonize the activity of full length isoforms, blocking LIP or 
p30 translation with mTOR or cap-dependent translation inhibitors could promote full length C/EBP 
translation as a mechanism for PCa cells to suppress proliferation, but avoid apoptosis, e.g. by 
increasing anti-apoptotic gene expression. The purpose of this research project is to determine the 
functional roles of C/EBPα/β translational isoforms in PCa progression to CRPC, tumor growth and 
survival and resistance to androgen deprivation.   

2. Keywords:
mTOR, PI3K, C/EBP beta, androgen receptor, cap-dependent translation 

3. ACCOMPLISHMENTS
• What were the major goals of the project?

• The overall objective of of this fellowship award is to train and develop the career of Dr. Barakat
so that he can function as an independent prostate cancer investigator. The research specific
goals of the award period are as follows:

1. Evaluate C/EBPα/β translational isoform expression in PCa cell lines treated with
pharmacological inhibitors of the PI3K-AKT-mTOR signaling pathway. Months 1-8. 100%
completed.

2. Evaluate proliferation and survival in PCa cell lines with combined C/EBPα/β KD or over-
expressing individual C/EBP translational isoforms. Months 9-13. 75% completed.

3. Mouse studies with engineered prostate cancer cell lines. Months 13-24. Not completed.

• Training-specific goals for this award period were as follows:
1. Attend selected prostate cancer specific research seminars. 100% completed
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2. Attend 2015 American Association for Cancer Research annual meeting. Completed
April 2015.

3. Present ongoing research at Prostate Cancer Research Day. Completed February 2015.
4. Attend the AACR Translational Cancer Research for Basic Scientists workshop. Not

completed. My submitted application for this workshop was rejected. I have since re-
applied for the 2015 workshop and have been put on a waiting list for attendance.

5. Publication of CCAAT/Enhancer binding protein β controls androgen-deprivation-induced
senescence in prostate cancer cells. Barakat DJ, Zhang J, Barberi T, Denmeade SR,
Friedman AD, Paz-Priel I. Oncogene. 2015 Mar 16. doi: 10.1038/onc.2015.41.
Completed November 2014.

6. Submit K99/R00 Pathway to Independence award. Completed.

• What was accomplished under these goals?
1. Major Activities:

The major research activities for this award period included the investigation of the role of
the signaling pathways that regulated C/EBPβ translation isoform expression, the role of C/
EBPβ in regulating AKT-mTOR activity and resistance to mTOR inhibitors and androgen
deprivation.

Training specific activities included attendance and poster presentation at the 2015 
American Association for Cancer Research national meeting in Philadelphia. This work was 
also presented as a poster presentation at two internal Johns Hopkins events: Prostate 
Cancer Research day and Fellows Research day. I also submitted a K99/R00 NIH pathway 
to independence grant. This task was originally planned for months 12-24, but had to be 
completed during the first year of the award because the NIH had changed the eligibility 
criteria. Postdoctoral fellows with more than 4 years of training by the time the award is 
reviewed are ineligible to apply. In the beginning months of the award, I published an article 
in the journal Oncogene titled: CCAAT/Enhancer binding protein β controls androgen-
deprivation-induced senescence in prostate cancer cells. This work was submitted prior to 
the fellowship award start date and a revision was completed during the award period.  

2. The specific objectives for this award period were the training and educational development
of Dr. Barakat in prostate cancer research, determination of the critical regulators of C/EBPβ
translational isoform expression in prostate cancer cells and evaluating the proliferation and
survival of prostate cancer cells deficient in C/EBP transcription factors in response to
chemotherapy.

3. Significant Results:
C/EBPα and -β are transcription factors that are expressed from an intronless transcript.
Truncated isoforms, C/EBPα p30 and C/EBPβ LIP, which lack transcriptional activation
domains are generated by translation from in-frame, down-stream start codons and can
exert dominant-negative effects by heterodimerizing with full-length isoforms [8]. Because
previous studies had indicated that cap-dependent translation and mTOR were critical
drivers of C/EBPα/β truncated isoforms, we therefore evaluated the effect of
pharmacological inhibitors of PI3K, mTOR or cap-dependent translation on C/EBP
translational isoforms by Western blot analysis. We treated the PTEN-null LNCaP and PC3
cell lines for 6 hours with PI3K inhibitor Ly294002 (25 µM), mTORC1 inhibitor RAD001
(100nM), mTORC1/2 inhibitor INK128 and 4E/Gi (25 µM), which blocks cap-dependent
translation by disrupting the interaction between eukaryotic initiation factor 4E (eIF4E) and
eIF4G. In LNCaP and PC3 cells, blockade of mTOR or PI3K lead to down regulation of all C/
EBP isoforms. Intriguingly, treatment with 4E/Gi lead to induction of C/EBPβ LAP isoforms in
LNCaP cells with preferential induction of LAP.  Further, 4E/Gi increased expression of all
three isoforms in PC3 cells (figure 1a). Expression of C/EBPα was almost undetectable in
LNCaP cells and modest in PC3 cells, indicating that it may not play a strong role in
response to mTOR inhibition in prostate cancer cells. Blocking PI3K or mTOR decreased
phosphorylation of p70S6K in LNCaP cells, but had no effect in PC3 cells. Intriguingly,
TORC1/2 blockade with INK128 blocked phosphorylation of eIF4E in both lines, indicating
that cap-dependent translation is suppressed. We next evaluated C/EBPα/β gene
expression under similar conditions in these cell lines by quantitative real-time PCR (qPCR)
to determine whether the changes in C/EBP expression were attributable to altered mRNA
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levels. Blockade of mTOR by RAD001 or INK128 lead to significant down-regulation of C/
EBPα/β gene expression and 4E/Gi had no effect on expression of these genes in LNCaP 
cells (Fig 1B). Ink128 down-regulated C/EBPβ levels and 4E/Gi modestly up-regulated 
CEBPB transcript levels in PC3 cells (Fig. 1B). These results indicate that cap-dependent 
translation rather than mTOR activity plays a crucial role in regulating the LIP:LAP isoform 
ratio in prostate cancer cell lines. Because we found that C/EBPα expression was minimally 
expressed in these cell lines, we focused our efforts on C/EBPβ for the remaining studies.  

 Although mTOR activity did not have a selective effect on C/EBPβ translational isoforms,    
we did observe an overall decrease in C/EBPβ protein levels in LNCaP and PC3 cells. 
Further, it has been suggested that C/EBPβ can regulate the activity of AKT-mTOR signaling 
by regulating REDD1 expression {Jin 2009}. These observations suggest that expression of 
C/EBPβ by mTOR activity could function in a negative feedback loop. We therefore 
evaluated whether C/EBPβ could regulate mTOR activity in PCa cells by shRNA knockdown 
and ectopic expression. These two lines are useful for evaluating the function of LIP and 
LAP because they show differential expression of these isoforms. We stably transduced 
PC3 cells with pTRIPZ-shRNA lentiviral vectors with doxycycline-inducible expression of 
scrambled RNA or shRNA targeting CEBPB and evaluated cell lysates for phosphorylation 
status of p70S6K as a readout for mTOR activity. After 72 hours of treatment with 0.25µg/ml 
doxycycline, we observed a substantial increase in phosphorylated p70S6K (Fig. 2A, left). 
Conversely, we generated PC3 cell lines with stably integrated doxycycline-inducible 
piggybac vectors for ectopic expression of C/EBPβ. We incubated cells with 0.5µg/ml 
doxycycline for 72 hours and evaluated cell lysates for phosphorylation status of p70S6K. 
Unexpectedly, the total levels of p70S6K were suppressed, but phosphorylation status of 
p70S6K remained unchanged (Fig 2A, right). Activation of mTOR activity in PC3 cells 
deficient in CEBPB was correlated with an decrease in REDD1 gene expression (Fig. 2B). 
Knockdown of CEBPB in LNCaP cells increased REDD1 expression 2-fold, likely owing to 
predominant LIP expression in this cell line (Fig. 2B and see Barakat et al., Fig 4A). To 
determine whether loss of C/EBPβ could influence prostate cancer response to mTOR 
inhibitors, we treated PC3 or LNCaP shCEBPB cells with escalating doses of the mTOR 
ATP-site inhibitor Ink128. We found that suppression of C/EBPβ decreased sensitivity of 
PC3 cells to Ink128 and had no effect on LNCaP cells (Fig 2C). These data suggest that C/
EBPβ LAP promotes sensitivity to INK128 and suppresses mTOR activity in PC3 cells.  
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Figure 1: Cap-dependent translation promotes C/EBP full-length isoform expression in 
PTEN-null prostate cancer cell lines. Western blot (A) and qPCR (B) analysis of PC3 and 
LNCaP cells treated for 6 hours with 25µM LY294002, 100nM RAD001, 100nM INK128 or 50µM 
4E/Gi. Bar graphs represent average of three experiments. Error bars: SEM. *p<0.01.



 Androgen deprivation can increase activity of mTOR to promote survival of prostate    
cancer cells and tumors [1, 2]. However, combined rapamycin treatment with androgen 
deprivation did not achieve clinical benefit [5]. We have previously shown that anti-
androgens dose dependently increase CEBPB and transcript and protein levels (see 
Barakat et al., 2015 figure 2). However, the LAP:LIP isoform ratio remained low under these 
conditions suggesting that cap-dependent translation remains high under conditions of 
androgen deprivation. Because blocking cap-dependent translation with 4E/Gi increased 
LAP expression in LNCaP cells and LAP expression suppresses mTOR activity, we next 
evaluated whether combined blockade of androgen receptor (AR) signaling in combination 
with 4E/Gi could increase the LAP:LIP isoform ratio than either treatment alone and 
suppress mTOR activity. We treated LNCaP cells with vehicle, 25µM bicalutamide, 50µM 
4E/Gi or their combination for 24 hours. As expected, combined treatment of 25µM 
bicalutamide with 25µM 4E/Gi increased LAP:LIP isoform ratio to a greater extent than 4E/
Gi alone (figure 2D). This also lead to a greater decrease in p70S6K phosphorylation and 
greater increase in REDD1 expression. These results suggest that manipulating C/EBPβ 
translational isoforms to favor LAP or decrease LIP translation could be a means to 
suppress mTOR activity during androgen deprivation. These data also have implications for 
C/EBPβ as a driver of resistance to hormonal therapy.  

 To determine whether C/EBPβ levels correlate with human prostate cancer progression    
we interrogated the Oncomine database. In the Grasso et al data set (26) that included gene 
expression patterns from 28 benign prostate tissues, 59 localized PC, and 35 CRPC 
samples CEBPB expression was significantly (p=1.9x10-6) elevated in CRPC compared 
with localized disease (Fig. 3A). Because C/EBPβ up regulation was associated with 
progression to CRPC, we next tested whether C/EBPβ played a role in the development of 
castrate-resistant growth of PCa tumors in a mouse xenograft model. shNTV or shCEBPB 
LNCaP cells were subcutaneously engrafted into male NSG mice and when tumors reached 
a volume between 100 and 300mm3 animals were put on a doxycycline-laced animal feed 
and surgically castrated seven days later. Tumor volume was monitored weekly by caliper 
measurement for 8-weeks (Fig. 3B). We observed significant suppression of CRPC growth 
in xenografts expressing shC/EBPβ (p<0.001). These results suggest that C/EBPβ is a 
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Figure 2. C/EBPβ LAP suppresses mTOR and promotes REDD1 expression. (A) Western blot 
analysis of PC3 cells expressing shRNA targeting CEBPB or ectopically expressing mouse C/
EBPβ. (B) qPCR analysis of REDD1 expression in PC3 and LNCaP cells with CEBPB KD or 
ectopic C/EBPβ expression (right-most bar graph). (C) Western blot analysis of LNCaP cells lysates 
from cultures treated with vehicle (DMSO 1:1000), 25µM bicalutamide (Bic), 50µM 4E/Gi or their 
combination (Bic + 4E/Gi) for 24 hours. (D) IC50 values derived from from WST-1 assay of 
shCEBPB PC3 and LNCaP cells treated with escalating doses of INK128 for 48hrs. Bar graphs 
represent average of three experiments. Error bars: SEM. *p<0.01.



critical determinant of CRPC growth and that androgen deprivation only modestly increases 
the LAP:LIP C/EBPβ isoform ratio. 

 Because the 4E/Gi did not induce cell death as a single agent in PC3 cells (not shown),    
we decided to evaluate the effects of other chemotherapy drugs which could potentially 
suppress cap-dependent translation, alter C/EBPβ translational isoform ratio and promote 
cell death. The proteasome inhibitor bortezomib promotes inhibition of cap-dependent 
translation by dephosphorylation of eIF4E binding protein 1 [22]. Further, it has been shown 
that bortezomib can up-regulate C/EBPβ gene and protein expression [27]. We therefore 
tested whether bortezomib could alter the C/EBPβ LAP:LIP isoform ratio in PCa cell lines. 
24 hours after treatment, we observed up regulation of C/EBPβ transcript and proteins 
levels in both LNCaP and PC3 cells (Fig 4A and B). Further, there was a dramatic increase 
in the LAP isoform levels in both of these lines (Fig 4A). We also observed increased 
expression of REDD1, a suppressor of AKT and mTOR in PC3 cells 48 hours after treatment 
with 25nM bortezomib (Fig. 4B). These data demonstrate that bortezomib can increase the 
C/EBPβ LAP:LIP translational isoform ratio in prostate cancer cell lines similar to 4E/Gi.  

 We next evaluated the role of C/EBPβ in regulating prostate cancer survival in response    
to bortezomib. shNTV and shCEBPB LNCaP cells were seeded in 96-well plates and treated 
with escalating doses of bortezomib for 48 hours. We evaluated cell viability by WST-1 
assay and observed a significant decrease in the IC50 value of cells deficient in C/EBPβ 
indicating increased sensitivity to bortezomib (Fig. 5A). We also evaluated PC3 cells under 

 Page !6

Figure 4. Bortezomib increases C/EBPβ LAP isoforms in PCa cell lines.  (A) Western blot 
analysis of C/EBPβ in  LNCaP and PC3 cells treated with escalating doses of bortezomib for 24 
hours. (B) Analysis of REDD1 and CEBPB gene expression in PC3 cells treated with 25nM 
bortezomib  for the indicated times by qPCR. Bar graphs represent average of three experiments. 
Error bars: SEM. *p<0.01.

Figure 3. Suppression of C/EBPβ is critical for CRPC growth. (A) Relative expression levels of 
CEBPB in RNA isolated from benign prostate (0), localized prostate cancer (1) and those with 
heavily treated castrate-resistant prostate cancer (2). Graph obtained from Oncomine using 
microarray data from Grasso et al., 2012; PMID: 22722839. (B) Tumor volumes recorded by caliper 
measurement in NOG mice following surgical castration. Tumor growth was analyzed by linear 
regression (* p<0.001). 



similar conditions, but did not observe a significant difference in IC50 value (Fig. 5B). 
However, this assay may not have been suitable for determining drug sensitivity in these 
cells because values from treated cells are normalized to vehicle treated controls and we 
observed a substantial decrease in PC3 growth upon suppression of C/EBPβ (fig 6a and b). 
This would suggest that the response to drug treatment is actually greater than normalized 
value in the cells lacking C/EBPβ. We therefore evaluated cell death by trypan blue 
exclusion in cells treated with 25 and 50nM bortezomib for 24 hours. We observed a 
significant increase in cell death in shCEBPB cells treated with 25nM (17.2% vs 34.5%) and 
50nM (22.8% vs 45.8%) bortezomib (Fig 5C). We further evaluated BCL2 levels in PC3 cells 
treated with bortezomib and found that BCL2 levels declined rapidly in shCEBPB cells, 
whereas BCL2 levels in control cells remained constant (Fig 5D). These results demonstrate 
that C/EBPβ promotes resistance to bortezomib in prostate cancer cells. 

 Next, we generated a pair of TALEN expression vectors with targeting sequences to the    
human CEBPB gene locus and a donor plasmid containing CEBPB homology arms flanking 
a hygromycin resistance cassette. The region between the homology arms within the 
CEBPB gene contains the TALEN targeting sites. We transfected PC3 cells with these 
vectors and 48hrs later added hygromycin (250µg/ml) to the medium. Cells were incubated 
for 4 days in hygromycin before being split into 96-well plates for hygromycin resistant sub-
clones. Genomic DNA from several subclones were analyzed by PCR with primers designed 
to amplify the deleted region of CEBPB. We identified one sub-clone which was negative for 
amplification of this region. However, we were still able to detect C/EBPβ protein in lysates 
collected from this subline (not shown). A control subline, which was not treated with 
hygromycin and still showed amplification of the CEBPB region by PCR was utilized as 
control (TALEN control).  Subsequent attempts to generate cell lines with complete knockout 
were unsuccessful. However, these cells with partial loss of C/EBPβ may still be useful for 
the study of CEBPB in prostate cancer. 

 We next characterized the growth rates of TALEN and shCEBPB knockdown cells relative     
to their respective controls. We evaluated cell growth by manually counting cells with a 
hemacytometer 2 and 4 days after plating and found that suppression of C/EBPβ 
dramatically decreased the rate of PC3 cell growth by 2.5-fold in shCEBPB and >3-fold in 
TALEN KD cells. Consistent with this finding, we also evaluated clonogenic growth and 
observed a decrease in colony number in cultures deficient in C/EBPβ (fig 7b). Loss of C/
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Figure 5. Suppression of C/EBPβ promotes cell death in response to bortezomib in prostate 
cancer cell lines.  (A and B) Analysis of PCa cell sensitivity to bortezomib by WST-1 assay in 
LNCaP and PC3 cells treated with escalating doses of bortezomib for 48 hours.  (C) Quantification 
of PC3 death by trypan blue exclusion in cultures treated for 24 hours with 0, 25 and 50nM 
bortezomib. (D) Western blot analysis of BCL2 expression in PC3 cultures treated with 25nM 
bortezomib for 0, 3 and 6hrs. Bar graphs represent average of three experiments. Error bars: 
SEM. *p<0.01.



EBPβ has been implicated in cell cycle defects and activation of DNA damage response 
(refs).  We next evaluated DNA content by PI staining in shCEBPB and TALEN KD PC3 cells 
72hours after seeding cells in growth medium. Suppression of CEBPB by either method 
yielded a significant decline in the percentage of G1 cells (Fig. 7C). However, knock down of 
CEBPB by TALEN targeting also showed an increase in G2/M and aneuploid (>G2/M) 
population. A similar pattern was observed in shCEBPB cells, but to a lesser extent (Fig 7C). 
Previous studies have shown cell cycle defects and DNA damage in cells deficient in C/
EBPβ [24, 26]. Next, we quantified the number of cells with DNA double strand breaks in 
shCEBPB cultures using phosphorylated histone 2A.X (γH2A.X) immunofluorescent staining 
and found a significant, >2-fold increase in cells displaying >5 DNA damage foci (Fig. 7D). 
These results indicate that C/EBPβ promotes cell proliferation and suppresses DNA damage 
in PC3 cells.  

 Lastly, we evaluated the role of C/EBPβ in prostate tumor growth and sensitivity to    
bortezomib.  We subcutaneously engrafted NSG mice with shNTV or shCEBPB PC3 cells in 
matrigel and when tumor reached sizes between 100 and 300mm3 mice were placed on a 
doxycycline-laced animal feed for two days and then received IP injection of bortezomib 
(1mg/kg) or vehicle (DMSO 1: 5000 in saline) on days 1, 4 and 8. Tumor volume was 
evaluated by caliper measurement. We found that suppression of C/EBPβ significantly 
reduced the growth rate of prostate tumors (Fig. 8A). Significantly, we also found that 
administration of bortezomib did not significantly affect the growth rate of control shNTV 
tumors and that suppression of C/EBPβ sensitized these tumors to bortezomib treatment. 
These results demonstrate that C/EBPβ promotes the growth of castrate-resistant prostate 
cancer and resistance to bortezomib in vivo. 
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Figure 6. C/EBPβ promotes PC3 growth and suppresses DNA damage. (A) Western blot 
analysis of C/EBPβ expression in PC3 cells with edited CEBPB by TALEN. (B) Quantification of 
PC3 cell growth after 3 and 5 days of culture. (B) Quantification of clonogenic growth in PC3 cells. 
(C) Determination of cell cycle fractions in PC3 cultures by FACS analysis of DNA content by PI 
staining. (D) Quantification of DNA double strand breaks in PC3 cultures by immunofluorescent 
staining of γH2A.X. Bar graphs represent average of three experiments. Error bars: SEM. *p<0.01.



Methods 
The methods used for these experiments have been described in the attached publication. 
Barakat et al., 2015.  Statistically significant differences in tumor growth rates were analyzed 
by linear regression analysis using Graph Pad Prism statistical software.  

Discussion of goals not met: 
 The findings of these studies reveal that C/EBPβ translational isoforms can be either    
beneficial or detrimental to prostate cancer cell survival depending on the treatment type. 
Our studies in androgen sensitive prostate cancer lines show that these cells preferentially 
express the LIP isoform and that the isoform ratio is maintained when C/EBPβ protein levels 
are increased during androgen deprivation. Our findings suggest that the higher levels of LIP 
are critical for maintaining mTOR activation because when we increase LAP expression, 
mTOR activity decreases. Further, C/EBPβ expression increases in castrate-resistant 
prostate cancer and suppression of C/EBPβ decreased castrate-resistant prostate cancer 
tumor growth. Conversely, LAP expression appeared to be protective when cells were 
challenged with the proteasome inhibitor, bortezomib. Because bortezomib causes 
proteotoxicity by accumulation of mis-folded proteins, suppression of protein synthesis by 
decreasing mTOR activity could promote cell survival in this context. These studies suggest 
that modulating mTOR activity is a key function of C/EBPβ for adaptation to metabolic stress 
in prostate cancer cells.  
     
 Contrary to our expected results, we have found that inhibition of mTOR leads to down-   
regulation of CEBPB transcripts and suppression of all three isoforms. However, this finding 
does not change the overall goals or objectives of the project because the purpose was to 
determine the critical regulators of C/EBP translational isoforms in prostate cancer cells and 
whether the change in isoform ratio could promote cell survival or therapeutic resistance. 
We found that cap-dependent translation was a critical regulator of LAP isoform expression 
in prostate cancer cell lines. We had intended to generate stable prostate cancer cell lines 
with ectopic expression of LAP or LIP isoforms. This proved challenging because C/EBPβ 
promotes cellular senescence when over-expressed in LNCaP prostate cancer cells, and 
appeared to generate an epithelial phenotype in PC3 cells (not shown). We are cloning 
these constructs into the piggybac tet-on vector for inducible over-expression of these 
isoforms in prostate cancer cells. For the next reporting period, we will focus our efforts on 
the role of C/EBPβ isoforms and inhibitors of cap-dependent translation in regulating 
survival during during androgen deprivation in vivo and in vitro. These experimental efforts 
will address the goals of major tasks 2 and 3.  

4. Other achievements: 
Nothing to report. 

• What opportunities for training and professional development has the project provided? 
There were several opportunities for training and professional development during the 
award period that Dr. Barakat took advantage of to achieve the planned training goals. Dr. 
Barakat presented his findings at the 2015 American Association for Cancer Research 
meeting in Philadelphia, PA and at two internal Johns Hopkins research events: Prostate 
Cancer Research Day and Fellows Research day. These events provided Dr. Barakat with 
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Figure 7. C/EBPβ promotes prostate 
tumor growth and resistance to 
bortezomib in vivo. (A) Quantification of 
PC3 tumor growth by caliper measurement 
in NOG mice treated with vehicle or 
bortezomib (1mg/kg) on days 1, 4 and 8.   
*p<0.01; *p<0.001



the opportunity to network with other professionals with similar research interests and  
served as a means to improve upon his scientific communication skills. Dr. Barakat had one- 
on-one meetings with his mentors, Dr. Alan Friedman and Dr. Samuel Denmeade, on 
several occasions where he was able to present his findings and receive feedback on the 
progress and direction of his ongoing studies. Dr. Barakat also had the opportunity to 
improve upon his grantsmanship skills by writing a K99/R00 pathway to independence 
award with the help of his mentor, Dr. Alan Friedman. Under the close guidance of Dr. 
Friedman, the grant application was successfully completed during the June submission 
cycle and a scientific review meeting has been set for October of this year. The original plan 
was to submit this grant during the second year of the award, but because of changes in 
eligibility criteria, the grant had to be submitted earlier. This experience was not only a 
grantsmanship training opportunity, but also helped Dr. Barakat to improve his skills in 
planning and developing a research project with long-term goals and represents initial steps 
towards developing an  independent scientific career.  
  
 Dr. Barakat also improved upon several laboratory skills during this award period including    
in vivo animal studies, subcutaneous prostate tumor xenografting, surgical castration, 
evaluating tumor volume by caliper measurement and administration of drugs by IP injection 
in mice.  Training in these skills were overseen by Marc Rosen, a research associate in Dr. 
Sam Denmeade’s laboratory with over ten years of experience in mouse prostate cancer 
models.  

 ▪   How were the results disseminated to communities of interest?      
 Nothing to report.                             
 ▪   What do you plan to do during the next reporting period to accomplish the goals?      
  During the next reporting period, we will focus our efforts on determining whether                           

increasing the LAP:LIP C/EBPβ isoform ratio by pharmacological blockade of cap-
dependent translation can promote cell death in combination with anti-androgens in vitro or 
delay castrate-resistant growth in animal models of prostate cancer in vivo. To accomplish 
the research goals of this award we will carryout the following experiments: 

 1) Determine the role of the C/EBPβ isoform ratio in androgen-sensitive prostate cancer cell                        
sensitivity to anti-androgens. We will transduce LNCaP cells with piggybac tet-on vectors 
(described in Barakat et al., 2015) for inducible expression of LAP and LIP isoforms. We will 
then utilize these cell lines to determine the role of individual isoforms in sensitivity to anti-
androgens or blockade of cap-dependent translation. We will evaluate LNCaP cell death in 
vitro by WST-1 assay and flow cytometry analysis of annexin V staining. Further, we will test 
whether C/EBPβ promotes survival during combined treatment of anti-androgens and 4E/Gi 
using cells with shRNA knockdown of C/EBPβ.  

 2) Evaluate the role of C/EBPβ isoforms in regulation of mTOR activity. We found that                        
blockade of cap-dependent translation increased LAP and REDD1 expression and 
suppressed mTOR activity in LNCaP cells. We will evaluate whether the increase in LAP 
was critical for suppression of mTOR activation under these conditions utilizing LNCaP cells 
expressing shRNA targeting C/EBPβ.  Under similar conditions, we will knockdown the 
expression of REDD1 with siRNA to evaluate whether REDD1 is a critical target of C/EBPβ 
which control mTOR activity in prostate cancer cells. Further, we will evaluate mTOR activity 
and REDD1 expression in LNCaP cells ectopically expressing LAP or LIP isoforms. We 
expect that LAP will suppress mTOR activation by REDD1 in LNCaP cells.  

 3) Evaluate the role of C/EBPβ translational isoforms in regulating progression to castrate-                       
resistant prostate cancer in vivo. We will transplant NOG mice with LNCaP cells expressing 
shRNA targeting C/EBPβ or control shRNA and following development of solid tumors, we 
will surgically castrate animals and treat them with 4E1RCAT (15mg/kg, i.p. daily for two 
weeks), a recently developed chemical inhibitor of cap-dependent translation that is suitable 
for in vivo use [21]. We will evaluate tumor growth for 8 weeks after castration by caliper 
measurement. In a separate group of mice, we will evaluate expression of C/EBPβ isoforms, 
cleaved caspase-3 and activation of mTOR by phosphorylation of p70S6K by Western blot 
analysis 72 hours after castration. We will further explore the role of bortezomib in regulating 
cap-dependent translation in prostate cancer cells and publish our findings on the role of C/
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EBPβ in resistance to bortezomib and the role of C/EBPβ isoforms in promoting progression 
to castrate-resistant disease as two separate studies.  

 4. IMPACT:         
 ▪ What was the impact on the development of the principal discipline(s) of the project?                      

 The findings of this research project further our knowledge of the mechanisms that govern    
protein metabolism in prostate cancer cells and how manipulating C/EBPβ can affect 
prostate cancer response to androgen deprivation or chemotherapy. The protein kinase 
known as mTOR is a key driver of protein synthesis in mammalian cells and is hyper-
activated in 40-70% of advanced prostate cancers. Because cancer cells grow at much 
faster rates than ordinary cells, activation of mTOR is necessary to keep up with metabolic 
demands of the growing tumor. Androgen deprivation therapy, the primary treatment for 
advanced prostate cancer, was recently suggested to increase mTOR activity and that this  
event could eventually drive resistance [1]. Our research group recently discovered that 
treating prostate cancer cells with androgen deprivation therapy increased the levels of 
another protein called CCAAT/Enhancer binding protein beta (C/EBPβ), which has been 
reported to regulate mTOR activity. Cells make short and long isoforms of this protein, which 
can promote cell proliferation or growth arrest and survival, respectively. We discovered that 
the long C/EBPβ isoform suppressed the activity of mTOR in prostate cancer cells and that 
we could use different drugs to promote the expression of the long isoform. Increasing 
expression of the long isoform in combination with androgen deprivation further suppressed 
mTOR activity. If we blocked expression of C/EBPβ in our prostate cancer cells, we found 
that the development of castrate-resistant tumor growth was delayed in mice transplanted 
with these cells. The results of this research project increased our understanding of how the 
isoforms of C/EBPβ are regulated, how these isoforms could regulate protein synthesis and 
cellular growth in prostate cancer cells and how altering the levels of individual C/EBPβ 
isoforms could effect resistance to chemotherapy or anti-androgens. 

 ▪ What was the impact on other disciplines?                      
 The findings of this research project increase our basic understand of the mechanisms that                        

govern the control of C/EBP translational isoforms and how the individual isoforms affect 
cellular protein metabolism. C/EBPβ is a critical player in cell metabolism and physiology. It 
is critical for promoting white adipocyte differentiation and it is expressed in the skeletal 
muscle and liver where it has been shown to play a role in regulating insulin sensitivity and  
glucose production and autophagy, respectively [28-30]. The findings of our studies are in 
line with the crucial metabolic role of C/EBPβ and show that the regulation of C/EBPβ 
isoforms can suppress or promote protein synthesis. 

 ▪ What was the impact on technology transfer?                      
 Nothing to report.                            
 ▪ What was the impact on society beyond science and technology?                      
 Nothing to report.                            

 5 CHANGES/PROBLEMS:          
 ▪ Changes in approach and reasons for change                      

Nothing to report. 
 ▪ Actual or anticipated problems or delays and actions or plans to resolve them                      

Nothing to report. 
 ▪ Changes that had a significant impact on expenditures                      

Nothing to report. 
 ▪ Significant changes in use or care of human subjects, vertebrate animals, biohazards,                      

and/or select agents 
 Nothing to report.                        
 ▪ Significant changes in use or care of human subjects                      

Nothing to report. 
 ▪ Significant changes in use or care of vertebrate animals.                      
  Nothing to report.                        
 ▪ Significant changes in use of biohazards and/or select agents                      
  Nothing to report.                        
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 6 PRODUCTS:          
 ▪ Publications, conference papers, and presentations                      
 ▪ Journal publications.                                  

Barakat DJ, Zhang J, Barberi T, Denmeade SR, Friedman AD, Paz-Priel I. CCAAT/
Enhancer binding protein β controls androgen-deprivation-induced senescence in 
prostate cancer cells. Oncogene. doi: 10.1038/onc.2015.41 [Epub, ahead of print]; 
2015. Published. Acknowledgment of federal support: yes. 

 ▪ Books or other non-periodical, one-time publications.                                  
Nothing to report. 

 ▪ Other publications, conference papers, and presentations.                                  
 CCAAT/enhancer binding protein beta facilitates castrate-resistant prostate cancer 
 cell growth and sensitivity to mTOR inhibitors. David J. Barakat, Jing Zhang, Alan D. 
 Friedman, Samuel R. Denmeade, Ido Paz-Priel. Johns Hopkins University,  
 Baltimore, MD. American Association for Cancer Research Annual Meeting,  
 Philadelphia, PA, April 19th, 2015. 

 ▪ Website(s) or other Internet site(s)                      
  Nothing to report.                        
 ▪ Technologies or techniques                      
  Nothing to report.                        
 ▪ Inventions, patent applications, and/or licenses                      

 Nothing to report.      
 ▪ Other Products                      
  Nothing to report.                        

 7 PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS          
 ▪ What individuals have worked on the project?                      
 ▪ Name:                                  
  David Barakat                                    
 ▪ Project Role:                                  
  Principle Investigator                                    
 ▪ Researcher Identifier (e.g. ORCID ID):                                  
  ORCID ID: 0000-0001-7057-178X                                    
 ▪ Nearest person month worked:                                  
  12                                    
 ▪ Contribution to Project:                                  
  Dr. Barakat performed all of the experiments proposed for this award, analyzed and                                    

interpreted results and presented data at conferences. 
 ▪ Funding Support:                                  
  PC131609    DOD Postdoctoral Fellowship Award   Barakat (PI)                                      

7/01/2014-6/30/2016 

 ▪ Has there been a change in the active other support of the PD/PI(s) or senior/key                      
personnel since the last reporting period?   

  Dr. Alan Friedman’s (primary mentor) active R01 grant: Regulation of Monocyte                                    
versus Granulocyte Lineage Specification has closed. Subsequent to this, he has 
been awarded an Alex’s Lemonade Stand Foundation grant and a Hyundai Hope on 
Wheels grant (see below).  

  28520 (Friedman)    7/01/14-6/30/16    1.8 Cal                                    
  Alex’s Lemonade Stand Foundation    $125,000                                    
  Converting the Glioblastoma Multiforme Tumor-Associated Macrophage Phenotype                                    
    The aims of this this project are to determine whether intra-cranial GL261 glioma                                  

tumor growth is reduced in mice with reduced or absent C/EBPβ or NF-κB p50, 
associated with M2 to M1 tumor-associated and marrow macrophage conversion; to 
determine whether C/EBPβ variants that bind NF-κB p50 but not DNA rescue the M2 
marrow macrophage phenotype; and to determine whether targeting PD-1 
synergizes with lack of C/EBPβ or NF-κB p50 to slow GL261 glioma tumor growth 
via reduced T cell blockade.   

 Page !12



  45945MD   (Friedman)   12/01/15-11/30/18  0.6 Cal                                    
  Hyundai Hope on Wheels      $80,000                                    
  Targeting M-CSF to PU.1 Signaling To Convert the GBM Tumor-Associated                                    

Macrophage Phenotype 
     The aims of this project are to determine whether intra-cranial GL261 glioma tumor                                 

growth is reduced in mice with reduced PU.1, associated with reduced M2 tumor-
associated macrophages and increased anti-tumor T cell immunity, to determine 
whether inhibition of MCSFR tyrosine kinase activity synergizes with reduced PU.1 to 
favor M1 over M2 TAM polarization and to slow/prevent GBM tumor growth, and to 
identify the MCSFR signaling pathway most critical for PU.1 activation or induction 
and determine whether inhibition of this pathway synergizes with MCSFR inhibition 
to favor M1 TAM polarization.  

 ▪ What other organizations were involved as partners?                      
  Nothing to report.                                    

 8 SPECIAL REPORTING REQUIREMENTS          
 ▪ COLLABORATIVE AWARDS:                      
   Nothing to report.                        
 ▪ QUAD CHARTS:                       
   Nothing to report.                        
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ORIGINAL ARTICLE

CCAAT/Enhancer binding protein β controls androgen-
deprivation-induced senescence in prostate cancer cells
DJ Barakat1, J Zhang1, T Barberi1, SR Denmeade2, AD Friedman1 and I Paz-Priel1

The processes associated with transition to castration-resistant prostate cancer (PC) growth are not well understood. Cellular
senescence is a stable cell cycle arrest that occurs in response to sublethal stress. It is often overcome in malignant transformation
to confer a survival advantage. CCAAT/Enhancer Binding Protein (C/EBP) β function is frequently deregulated in human
malignancies and interestingly, androgen-sensitive PC cells express primarily the liver-enriched inhibitory protein isoform.
We found that C/EBPβ expression is negatively regulated by androgen receptor (AR) activity and that treatment of androgen-
sensitive cell lines with anti-androgens increases C/EBPβ mRNA and protein levels. Accordingly, we also find that C/EBPβ levels are
significantly elevated in primary PC samples from castration-resistant compared with therapy-naive patients. Chromatin
immunoprecipitation demonstrated enhanced binding of the AR to the proximal promoter of the CEBPB gene in the presence
of dihydroxytestosterone. Upon androgen deprivation, induction of C/EBPβ is facilitated by active transcription as evident by
increased histone 3 acetylation at the C/EBPβ promoter. Also, the androgen agonist R1881 suppresses the activity of a CEBPB
promoter reporter. Loss of C/EBPβ expression prevents growth arrest following androgen deprivation or anti-androgen challenge.
Accordingly, suppression of C/EBPβ under low androgen conditions results in reduced expression of senescence-associated
secretory genes, significantly decreased number of cells displaying heterochromatin foci and increased numbers of Ki67-positive
cells. Ectopic expression of C/EBPβ caused pronounced morphological changes, reduced PC cell growth and increased the number
of senescent LNCaP cells. Lastly, we found that senescence contributes to PC cell survival under androgen deprivation, and C/EBPβ-
deficient cells were significantly more susceptible to killing by cytotoxic chemotherapy following androgen deprivation. Our data
demonstrate that upregulation of C/EBPβ is critical for complete maintenance of androgen deprivation-induced senescence and
that targeting C/EBPβ expression may synergize with anti-androgen or chemotherapy in eradicating PC.

Oncogene advance online publication, 16 March 2015; doi:10.1038/onc.2015.41

INTRODUCTION
Prostate cancer (PC) is the most prevalent malignancy in adult
men in the United States.1 Although early detection and treatment
of localized disease is often curative, PC remains a leading cause
of cancer death. Anti-androgen therapy is the most effective
approach in patients with advanced disease and induces
significant responses in almost all patients.2 However, androgen
deprivation achieved by pharmacologic or surgical castration
results in only limited apoptosis of tumor cells3,4 and accordingly
only partial tumor regression. Indeed, after a period of disease
control, most patients develop castration-resistant growth and
PC progression, which is responsible for the majority of the
morbidity and mortality associated with this disease.2 Identifying
mechanisms that engender castration resistance is crucial for
the design of future therapeutic strategies. Progress has been
made understanding the mechanisms associated with eventual
emergence of castration-resistant PC (CRPC). However, less is
known about the early adaptation associated with androgen
deprivation.5–7

Members of the CCAAT/enhancer binding protein (C/EBP)
family of transcription factors are characterized by a conserved
C-terminus, which contains both a DNA-binding basic region
and leucine-zipper, collectively referred to as the bZIP domain.

C/EBPβ is a widely expressed transcription factor that promotes
proliferation or terminal differentiation and growth arrest in
several different cell types.8 These opposing functions seem to be
regulated by the expression of different C/EBPβ translational
isoforms from three in-frame start codons within an intron-less
mRNA.9,10 The two high molecular weight C/EBPβ isoforms,
termed liver-enriched activating proteins (LAP and LAP*), contain
N-terminal transactivation domains, whereas the liver-enriched
inhibitory protein lacks these transactivation domains. Liver-
enriched inhibitory protein can dominantly inhibit LAPs and other
C/EBP members via heterodimerization or by recruiting
transcriptional repressors.11 C/EBPβ activity affects several facets
of PC disease progression. C/EBPβ regulates the expression of
steroidogenic genes including StAR and cytochrome p450
aromatase,12,13 and its activity is modulated in response
to dihydrotestosterone, estrogen and progesterone.14–17 It has
also been suggested that C/EBPβ can act as a co-repressor of
the androgen receptor (AR) in PC.18,19 Although C/EBPβ is
not detected in healthy prostate, luminal epithelial cells upregulate
C/EBPβ in the case of proliferative-inflammatory atrophy, a
precursor to PC, 20 and C/EBPβ participates in the regulation
of metastatic genes and PC cell survival.21,22 However, the
contribution of C/EBPβ to the emergence of castration-resistant
growth has not been previously investigated.
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Cellular senescence is a stable cell cycle arrest that occurs in
response to a variety of intrinsic and extrinsic sublethal stress
stimuli.23,24 Accumulating data point to an important role of
senescence in cancer progression.23,24 Recently, several groups
demonstrated that in response to androgen deprivation, PC cells
undergo senescence, and that the acquisition of senescence is
associated with emergence of castrate-resistant growth.5–7 In
other lineages, C/EBPβ and its downstream target genes are
critical for the induction and maintenance of oncogene-induced
senescence, associated with overexpression of activated Ras or
BRAF.8,25,26 C/EBPβ can directly bind to target gene promoters and
enhancers to induce senescence-associated factors IL-6 and IL-8,
but can also suppress E2F-1 target genes and induce growth arrest
dependent on E2F:pRb.8

We now demonstrate that upon androgen deprivation, C/EBPβ
is rapidly upregulated in androgen-sensitive PC cells and that AR
binds to and suppresses the C/EBPβ proximal promoter. Increased
expression of C/EBPβ under these conditions is necessary for
acquisition of the senescent phenotype. Accordingly, preventing
C/EBPβ upregulation increases the susceptibility of PC cells to
apoptosis induced by chemotherapy.

RESULTS
CRPC is associated with increased CEBPB
To determine whether C/EBPβ levels correlate with human PC
progression, we interrogated the Oncomine database.27 In the
Grasso et al.28 data set that included gene expression patterns from
28 benign prostate tissues, 59 localized PC and 35 CRPC samples,
CEBPB expression was significantly (Po1.9× 10− 6) elevated in
CRPC compared with localized disease (Figures 1a and b).

Inhibition of AR induces CEBPB transcription
Treatment of LNCaP cells with the synthetic AR agonist R1881 for
24 h results in a dose-dependent 2.5-fold decrease in CEBPBmRNA
and protein expression (Figures 2a and b), and as expected,
prostate-specific antigen transcript levels increased under these
conditions. Conversely, culturing LNCaP cells in androgen-
depleted media (ADM) for 7 days resulted in a significant
3.8-fold increase in C/EBPβ expression (Figure 2c). Pharmacologic
inhibition of the AR using bicalutamide resulted in a dose-
dependent rise in CEBPB transcript abundance, achieving a
7.5-fold increase at the highest dose tested (Figure 2d). Accord-
ingly, we detected increased protein levels of C/EBPβ in both
LNCaP and LAPC4 cells treated with bicalutamide or flutamide
(Figure 2e). As bicalutamide or flutamide may have an AR agonist
effect, we also tested the effect of enzalutamide, which does not
have agonistic effects. Similar to bicalutamide, incubation with
20 μM enzalutamide resulted in increased C/EBPβ levels (Figure 2f).

CEBPB RNA levels were rapidly upregulated within 4 h of exposure
of LNCaP cells to bicalutamide (Figure 2g).
To assess binding of AR to the CEBPB promoter, LNCaP cells

were cultured in full media and subjected to chromatin
immunoprecipitation analysis. Precipitated DNA was amplified
using primers spanning the proximal (−131 to − 242 bp) or distal
(−2098 to − 1983 bp) regions of the human CEBPB promoter. We
observed AR binding to the proximal but not the distal region
(Figure 3a). Next, CEBPB-luc, containing proximal promoter region
(−888 to +64) linked to a luciferase reporter, was co-transfected
into LNCaP or DU145 PC cells with CMV-β-galactosidase as internal
control. Reproducibly, luciferase activity significantly decreased by
2.5-fold in LNCaP cells cultured with 1 nM R1881 for 24 h compared
with vehicle control (Figure 3b). This effect on CEBPB promoter
activation was mediated by the AR as R1881 did not reduce
luciferase activity in similarly transfected DU145 cells which lack
AR. Treatment of LNCaP cells with bicalutamide for 4 h induced
acetylation of histone H3 bound to the CEBPB proximal promoter,
whereas culture with dihydrotestosterone suppressed this mark of
active transcription (Figure 3c). Importantly, we did not observe
significant changes in the half-life of CEBPB RNA in response to
bicalutamide, indicating that the stability of CEBPB transcripts was
unaffected (Figure 3d). Collectively, these results show that the AR
suppresses transcription of CEBPB.

Ectopic expression of C/EBPβ suppresses LNCaP cell growth
Because C/EBPβ expression was inversely regulated by AR activity,
an essential signal for PC cell growth, we next evaluated whether
ectopic expression induces growth arrest similar to androgen
deprivation. C/EBPβ was inducibly expressed in LNCaP cells using
the Tet-regulated transposon-based piggyBac vector29 and cells
with stable integration of the transgene or an empty vector
(PB-TRE) control were selected by puromycin (2 mg/ml). Treatment
of LNCaP PB-CEBPB cells with doxycycline for 5 days induced an
increase in the expression of C/EBPβ 2.5-fold (Figure 4a), similar to
the increase seen in LNCaP cells cultured in enzalutamide. C/EBPβ
forced expression was associated with increased levels of the cell
cycle inhibitors p16INK4A and p15INK4B and a flattened morphology
(Figures 4a and b). Next, we tested the effect of C/EBPβ
overexpression on LNCaP cell proliferation. Equal numbers of
LNCaP PB-CEBPB or PB-TRE control cells were seeded in
doxycycline-containing media and enumerated after 3 and 5 days.
Ectopic C/EBPβ expression resulted in a significant 2.3-fold
decreased rate of proliferation (Figure 4c) and a significantly
increased number of Ki67-negative cells 5 days after doxycycline
treatment (Figure 4d) without increased cell death (Figure 4e).
These data demonstrate that elevated levels of C/EBPβ are
sufficient to suppress the growth of androgen-sensitive PC cells.
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Figure 1. C/EBPβ expression increases in CRPC. Individual patient (a) and mean (b) CEBPB expression as log2 median centered ratio for benign
prostate, localized PC and CRPC.
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C/EBPβ is required for complete maintenance of androgen-
deprivation-induced growth arrest
Persistence of PC cells under androgen-deprived conditions is an
initial step towards development of castration-resistant growth.
Upon androgen deprivation, LNCaP cells undergo cell cycle arrest
and enter a senescent state.5–7 Importantly, androgen deprivation-
induced senescence is only partly reversible and cells continue to
display senescence markers and poor proliferation after
re-exposure to androgen.6 Because C/EBPβ upregulation was
associated with androgen deprivation and its expression sufficient
to suppress LNCaP proliferation, we next targeted C/EBPβ to test
its function in androgen-deprivation-induced growth arrest. We
utilized two independent methods: inducible shRNA and
transcription activator-like effector nucleases (TALENs).30,31 We
designed a pair of TALENs to target the CEBPB gene, transfected
LNCaP cells, and screened individual clones for C/EBPβ expression.
Subclone 6, was identified as having CEBPB knockdown
(presumably due to incomplete targeting of all alleles in the

polyploid LNCaP cells) (Figure 5a), and used in our subsequent
experiments. A complete stable deletion of all CEBPB alleles could
not be achieved, suggesting C/EBPβ plays a critical role for cell
survival. As control we employed subclone 1 in which C/EBPβ
expression is similar to that observed in parental cells. In addition,
C/EBPβ expression was effectively knocked down in LNCaP cells
utilizing a doxycycline-inducible shRNA against CEBPB (shCEBPB)
compared with a non-targeting vector control (shNTV) (Figure 5b).
We used flow cytometry to investigate the effect of C/EBPβ
depletion on PC cell cycle distribution (Figure 5c). For these
studies, we employed cells expressing the inducible shRNA as
stable deletion of C/EBPβ via TALEN required adaptation to low
C/EBPβ levels. Cells expressing shCEBPB or shNTV both went into
G1 cell cycle arrest when cultured in ADM (Figure 5c).
The growth arrest induced by androgen deprivation is

associated with changes in cell cycle inhibitors including p16INK4A,
p15INK4B and p21WAF1. Because C/EBPβ has been shown to
regulate the expression of these genes, we next evaluated their
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expression in LNCaP cells following androgen deprivation. The
levels of p16INK4A, p15INK4B and p21WAF1 proteins were diminished
in C/EBPβ-deficient cells compared with shNTV cultured in
androgen-replete media (ARM) or ADM (Figure 5d). In contrast
to p15INK4B and p21WAF1, p16INK4A protein levels mildly increased
in shCEBPB cells following culture in ADM, compared with culture
in ARM. However, p16INK4A levels in shCEBPB cells are markedly
lower compared with shNTV control cells cultured in either ARM or
ADM (Figure 5d).
To evaluate whether C/EBPβ is required to maintain growth

arrest of LNCaP cells challenged by androgen deprivation, we pre-
cultured LNCaP cells harboring shNTV or shC/EBPβ in ADM or ARM
with doxycycline for 7 days, re-seeded equal number of cells in
ARM and enumerated viable cells 5 days later (Figure 6a). As
expected from the observed inhibition of G1 to S cell cycle
progression (Figure 5c), culture in ADM for 7 days resulted in
diminished cell accumulation (not shown). Although in ARM, the
rate of proliferation of shCEBPB cells was modestly lower than
shNTV cells, C/EBPβ knockdown was associated with a better,
although incomplete, recovery of proliferation after pre-culture in
ADM (Figure 6b).
Charcoal-stripped fetal bovine serum (FBS) lacks androgen and

multiple other growth factors. To define the specific effect of
androgen depletion, LNCaP cells harboring shNTV or shCEBPB
were pre-cultured with doxycycline and bicalutamide, enzalutimide
or vehicle for 4 days, and subsequently re-plated at equal
numbers in ARM without inhibitors (Figure 6a). In contrast to
shNTV cells, which demonstrated twofold decreased recovery,
CEBPB-depleted cells completely recovered their proliferation
once released from AR inhibition (Figure 6c). To better reflect
recovery and adjust for the different proliferation rate in ARM of
shCEBP compared with shNTV cells, we also plotted these data as
a ratio of growth of cells pre-cultured in ADM, bicalutamide or
enzalutimide to cells pre-cultured in ARM (Figure 6d). This
normalization highlights the recovery of proliferation of shCEBPB
compared with shNTV cells in each experiment, indicating that
C/EBPβ is required for maintenance of complete growth arrest

induced by androgen deprivation and its suppression alleviates
the phenotype, at least in part.

C/EBPβ elevation induces senescence
Because C/EBPβ seemed to play a role in maintaining growth
arrest following androgen deprivation, we next evaluated whether
overexpression of C/EBPβ was sufficient to induce senescence
in LNCaP cells. Senescent cells are characterized by an increase
in cell volume, granularity and lysosomal mass indicated
by senescence-associated β-galactosidase (SA-β-gal) activity.32

Compared with control PB-TRE, PB-CEBPB cells had a significant
increase in the number SA-β-gal-positive cells and the level of cell
granularity, as assessed by side scatter (Figures 7a and b).
Expression of several secreted gene products is elevated in
senescent cells and is referred to as the senescence-associated
secretory phenotype.24 Release of these secreted factors promotes
paracrine growth arrest, and C/EBPβ was shown to be central
to induction of senescence-associated secretory phenotype
genes.25,33,34 Accordingly, overexpression of C/EBPβ led to a
significant increase in the transcript levels of two senescence-
associated secretory phenotype-associated genes, IL8 and IGFBP3
(Figure 7c). Similarly, we observed increased IGFBP3 and IL8 levels
upon androgen deprivation, which was abrogated by either CEBPB
shRNA or TALEN targeting (Figures 7d and e). Another feature of
senescent cells is accumulation of tightly packed heterochromatin
foci characterized by increased di- or trimethylated histone 3 on
lysine 9 (H3K9me2, H3K9me3).35 When cultured in ADM, LNCaP-
shNTV cells display a twofold increase in the number of
heterochromatin foci-positive cells. In contrast, we did not observe
an increase in heterochromatin foci in shCEBPB cells cultured
under similar conditions (Figure 7f). Senescent cells exit the cell
cycle, and stain negative for Ki67. A similar proportion of shNTV or
shCEBPB cells expressed Ki67 in ARM. However, the proportion of
Ki67-negative cells after 1 week of culture in ADM was twofold
lower in cells lacking C/EBPβ (Figure 7g). Together, these data
indicate that in PC cells C/EBPβ is necessary for induction of
senescence upon androgen deprivation.
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Cellular senescence engenders a pro-survival phenotype. Given
rapid induction of C/EBPβ in the absence of AR signaling and its
role in directing senescence, we evaluated whether targeting
C/EBPβ synergizes with anti-androgen agents or chemotherapy in
killing PC cells. Culture of LNCaP shNTV and shCEBPB in ADM
(Figure 8a) or exposing them to bicalutamide (Figure 8b)
increased the number of dead cells relative to ARM cultures.
However, there was no difference in cell viability between shNTV
and shCEBPB cells (Figures 8a and b). However, after pre-culture in
ADM, treatment with docetaxel or etoposide induced a significant
68% or 55% increase in cell death, respectively, in LNCaP cells
harboring shCEBPB compared with shNTV (Figure 8c). Together,
these data demonstrate that C/EBPβ promotes a pro-survival,
drug-resistant phenotype during androgen deprivation.

DISCUSSION
Accumulating evidence points to a strong connection between
senescence and tumor progression.23,24,36 Oncogene-induced
senescence promotes the eventual emergence of subpopulations
of aggressive, malignant cells and thus may be considered a
tumor-promoting state. In PC, androgen-deprivation-induced
senescence promotes the development of tumor progression
and resistance to apoptosis,5 fostering the emergence of cancer-
initiating cells.37 Increased numbers of senescent cells have been
observed in tissue sections from tumors in patients that had been
treated with neoadjuvant androgen deprivation therapy.7 Also,
cellular senescence induced by androgen deprivation dramatically
increases reactive oxygen species and DNA double-strand breaks,
and leads to the outgrowth of hormone-refractory populations in
cultured LNCaP cells.5 CRPC emerges as a result of multiple
adaptations, including AR gene amplification, abnormal AR
activation or enhanced steroidogenesis.2 These changes are
acquired and propagated as a result of selective pressure exerted
on PC cells by an androgen-poor milieu while cells are protected
by the androgen-deprivation-induced senescence state. Previous
reports have suggested that androgen deprivation leads to a
senescent state in both LNCaP and LAPC4 cells, but the
mechanism by which these cells become senescent was not well
described.5–7 Here, we demonstrate that PC cells respond to
androgen withdrawal by upregulating CEBPB transcription, that
loss of C/EBPβ lead to a reduction in the number of senescent cells
following androgen deprivation, and that ectopic expression of
C/EBPβ induces the expression of senescent markers indicating
that C/EBPβ plays a central role in cellular senescence induced by
androgen deprivation, and that impeding the senescent response
via inhibition of C/EBPβ expression keeps PC cells susceptible to
chemotherapy, validating C/EBPβ as a therapeutic target in
androgen-dependent PC.
Probing the Oncomine database revealed elevated expression

of CEBPB in human CRPC samples. As CRPC is often characterized
by active AR signaling, this finding may seemingly be at odds with
our in vitro data showing that AR activity suppresses C/EBPβ
expression. Several potential explanations may account for
elevated C/EBPβ levels despite active AR signaling in CRPC. It
has been demonstrated that there is substantial divergence in AR
gene targets when comparing castrate-resistant to androgen-
sensitive cells.38 Further, androgen deprivation or castration
resistance is associated with decreased AR occupancy on
repressive DNA elements,39 and the expression of many AR-
repressed genes increases in castrate-resistant cells.39 Finally,
although castrate-resistant cells often exhibit increased levels of
AR, AR signaling relative to androgen-sensitive PC cells may not
increase because of diminished ligand levels. Therefore, C/EBPβ
de-repression may persist in cells that have developed castration
resistance.
Our data demonstrate that inhibition of AR leads to rapid

upregulation of CEBPB RNA, loss of AR interaction with the CEBPB
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Figure 4. Ectopic expression of C/EBPβ suppresses LNCaP cell
growth. (a) LNCaP PB-CEBPB and PB-TRE control cells were cultured
for 5 days in 0.5 μg/ml doxycycline. Cell lysates were obtained and a
representative western blot analysis for C/EBPβ, p15INK4B and
p16INK4A is shown. Numbers below the blots indicate the relative
band density. (b) Phase-contrast images of LNCaP PB-TRE and
PB-CEBPB cells after 5 days in culture with 0.5 μg/ml doxycycline.
(c) 1.5E5 LNCaP PB-CEBPB or PB-TRE cells were seeded in media
containing 0.5 μg/ml doxycycline. Cells were enumerated on day 3
and 5. (d) Cells were cultured under similar conditions and the Ki67
expression was analyzed after 5 days of doxycycline treatment.
(e) The number of dead cells on day 5 was assessed by trypan blue
exclusion. All graphs represent the average of three experiments,
error bars: s.e.m.; *Po0.01; **Po0.02.
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promoter and increased promoter H3K acetylation. To our
knowledge, this is the first demonstration that CEBPB is a direct
AR transcriptional repressive target. This observation is consistent
with previous reports showing that AR can inhibit gene expression
through interaction with transcriptional co-repressors at proximal
promoter regions.40–42 Derepression of CEBPB occurs within 4 h of
exposure to anti-androgens. Conversely, treatment with AR
agonist R1881 results in diminished expression of C/EBPβ and
suppression of the activity of a CEBPB promoter luciferase reporter.
Accordingly, exposure to dihydrotestosterone leads to a decrease
in activating AcH3 histone marks on the promoter. These findings
indicate that AR suppresses CEBPB expression directly through
regulation of the promoter. Examination of the CEBPB promoter
sequence did not identify an androgen response element,
suggesting indirect binding of AR. In other contexts, AR directly
interacts with Sp1 to regulate gene expression in the absence of
an androgen response element making Sp1 a potential mediator
of AR regulation of CEBPB.43,44

Treatment of LNCaP cells with anti-androgens or culture in
hormone-depleted media leads to G1 arrest and cellular
senescence. PC cells require AR signaling for transition from G1
to S, and accordingly, we did not observe continued proliferation
of cells that had been cultured in hormone-depleted media
or with anti-androgens regardless of CEBPB knockdown.

Androgen-deprivation-induced senescence had a profound long-
lived effect on PC cell proliferation in the presence of normal
C/EBPβ levels even after reintroduction of androgens, as
previously observed.6 We found that after androgen deprivation,
C/EBPβ deficiency allowed LNCaP cells to resume proliferation
when re-seeded in ARM. Thus, C/EBPβ plays an important role in
the complete maintenance of senescent growth arrest induced by
androgen deprivation.
Senescent cells develop unique secretory paracrine activities,

conferring a pro-malignant microenvironment by secreting an
array of cytokines and proinflammatory mediators.24,45,46 Our
results raise the possibility that C/EBPβ also promotes the
expression of senescence-associated secretory genes such as
IL-8 and IGFBP3 and the cell cycle inhibitors p21WAF1 and p15INK4B.
IL-8 signaling has been shown to promote cell survival,
angiogenesis and senescence in pre-clinical models of PC.8,47,48

It activates the PI3K-AKT-mTOR pathway, which is critical for cell
survival during androgen deprivation.49 IGFBP3 is strongly
upregulated following androgen deprivation and promotes tumor
growth in a mouse PC model.50,51 In PC patients, the percentage
of cells positive for p15INK4B was shown to increase with tumor
grade.52–54 Expression of p21WAF1 correlates with a worsened
prognosis both before and after androgen deprivation therapy,
and in vitro studies of p21WAF1 have shown that it suppresses
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apoptotic response to chemotherapy.55–57 These findings are
consistent with our results showing that C/EBPβ-deficient cells,
with decreased p21WAF1 and p15INK4B levels, were more sensitive
to chemotherapy post androgen withdrawal. Increased p16INK4A

expression is not essential to androgen-induced senescence,5

and we see suppression of p16INK4A in C/EBPβ-deficient LNCaP
cells. Overall, C/EBPβ promotes PC senescence and thereby
potentially chemo-resistance and progression to castration-
resistant growth through multiple transcriptional targets during
androgen deprivation therapy (Figure 8d).
Our delineation of CEBPB upregulation in human hormone-refractory

PC further support the concept that C/EBPβ-dependent induction of
senescence during androgen blockade promotes castration-resistant
progression by providing the opportunity to respond to the selective
pressure of anti-androgen therapy. Importantly, these data indicate
the potential utility of targeting C/EBPβ in combination with
androgen deprivation for novel PC therapy.

MATERIALS AND METHODS
Cell lines and plasmids
LNCaP cells were maintained in RPMI media without phenol red with 10%
heat-inactivated FBS (HI-FBS) (Hyclone Laboratories, Logan, UT, USA)
supplemented with penicilin/streptomycin. LAPC4 cells were maintained in
Iscove’s modified Dulbecco’s media (IMDM) supplemented with 15% HI-
FBS, 1 nM dihydrotestosterone and penicillin/streptomycin. DU145 cells
were maintained in RPMI with 10% HI-FBS, and 293T cells were cultured in
Dulbecco modified Eagle medium with 10% HI-FBS. Cells were grown in a
humidified incubator maintained at 37 °C with 5% CO2. Cells were split 1:4
and were used until passage 40. Cells transduced with pTRIPZ-shRNA or
transfected with pPB-TRE-Puro were maintained in tetracycline-screened
FBS (Hyclone Laboratories). For androgen deprivation, cells were cultured
in phenol red-free media supplemented with 10% charcoal-stripped FBS
(Hyclone Laboratories). AR was blocked using enazlutamide (Selleckchem,
Houston, TX, USA) or bicalutamide (Sigma-Aldrich, St Louis, MO, USA).
pTRIPZ-shRNA (Open Biosystems, Lafayette, CO, USA) lentiviral vectors

were generated as described58 and stably transduced cells were selected
with puromycin (2 μg/ml) after 48 h. Expression of shRNA was induced by
treating cells with 200 ng/ml doxycycline, replaced every 48 h and
confirmed by fluorescence microscopy detection of RFP.
The pPB-TRE-Puro plasmid (kindly provided by Jolene Ooi and Pentao

Liu) contains a multiple cloning site downstream of a TRE element, and a
CAG promoter upstream of rtTA, IRES and apuromycin resistance gene. The
mouse Cebpb ORF including the 3′UTR (1–1400) was ligated as BamHI/NotI
fragment into the BglII/NotI-digested pPB-TRE-Puro plasmid29 to generate
the pPB-CEBPB which was confirmed by sequencing. Stable PB-TRE and
PB-CEBPB cell lines were generated by transfecting equal parts pCMV-
hyperpiggybase and piggybac vectors by lipofection.

Western blotting
Protein samples from whole-cell lysates and nuclear extracts were
prepared and subjected to western blotting as previously described.59

After blocking with Odyssey blocking buffer (LI-COR Bioscience, Lincoln,
NE, USA), membranes were incubated overnight with the following
primary antibodies: p15INK4B (M-20), C/EBPβ (C-19), AR (N-20) (Santa Cruz
Biotechnology, Dallas, TX, USA), β-actin (AC15) (Sigma-Aldrich). For target
protein detection, membranes were incubated with secondary antibodies,
goat anti-mouse Alexafluor 670 (Life Technologies, Carlsbad, CA, USA) or
goat anti-rabbit antiserum (LI-COR) and imaged on a Li-Cor Odyssey Fc
infrared imaging system.

Quantitative real-time PCR
Total RNA was isolated from cells and first strand cDNA was synthesized as
previously described.58 β-actin transcript was used as a reference to
normalize samples and relative expression was calculated as described.58

Each sample was assayed in triplicates and each experiment was repeated
at least three times. Oligonucleotides were custom ordered from Sigma-
Aldrich, and their sequences are presented in Table 1.
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Luciferase reporter assays
Using PCR, a DNA fragment from − 888 to +64 base pairs (bp) relative to
the initiation of transcription (Ensembl database) of the human CEBPB
promoter was cloned as a BamHI/MluI fragment into BglII/MluI-digested
pGL3-luciferase reporter vector (Promega, Madison, WI, USA) to generate
CEBPB-Luc that was confirmed by Sanger sequencing. LNCaP or DU145
cells were seeded in 6-well plates and transfected using Lipofectamine
2000 (Invitrogen, Carlsbad, CA, USA). Each well was co-transfected with

1.4 μg of the reporter plasmid and 10 ng of CMV-β-galactosidase as
an internal control. Twenty four hours after transfection, cells were
treated with vehicle (0.01% ethanol) or the androgen agonist R1881
(Sigma-Aldrich) and after additional 24 h, cells were lysed (Reporter Lysis
Buffer, Promega) and assayed for luciferase and β-galactosidase activity.
Fold activation relative to the vehicle-treated cells after correction for
β-galactosidase activity was determined. Lysates from non-transfected
cells were used as baseline.
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TALEN construction and CEBPB gene editing
TALEN DNA constructs targeting the human CEBPB ORF were constructed
using the Golden Gate Talen assembly kit (Addgene, Cambridge, MA,
USA).30 Targeting sequences were designed using the Cornell University
TAL Effector Nucleotide Targeter 2.0 web-based software. Golden Gate
assembly of the repeat-variable di-residue sequence was performed
according to the manufacturer’s instructions, and the completed TALEN
pairs were ligated into the pTAL3 vector. The complete TALEN ORF
including the repeat-variable and FokI domains was excised using XhoI and
ApaI restriction endonuceases and ligated into the pcDNA3.1(+) vector.
LNCaP cells cotransfected with TALEN expression vectors targeting CEBPB
were seeded in 96-well dishes, and individual clones were screened for
C/EBPβ expression by western blotting.

DNA content analysis and flow cytometry
Cell cycle analysis by DNA content was performed as previously
described.60 Ki67-expressing cells were identified by flow cytometry
using APC-anti-Ki67 antibody (BioLegend, San Diego, CA, USA). Flow
cytometry analysis was performed using a BD FACSCalibur machine (BD
Biosciences, San Jose, CA, USA). Sub-cellular debris and dead cells were
gated out and singlet discrimination was performed by gating on FL2-A
and FL2-W channels and data were interpreted using FloJo Cytometric
Analytical software (TreeStar, Ashland, OR, USA).

Chromatin immunoprecipitation
5E6 LNCaP cells were used in each chromatin immunoprecipitation
reaction as previously described,58 using antibodies against C/EBPβ, AR,
rabbit IgG (Santa Cruz Biotechnology) or acetylated histone H3 (06–599)
(Millipore, Billerica, MA, USA). DNA fragments corresponding to the
promoters of interest were detected by PCR using the primers presented
in Table 1.

Cell viability and proliferation assays
Viability was determined using the WST-1 assay (Roche, Indianapolis, IN,
USA). Briefly, cells were seeded into 96-well plates, allowed to adhere for
48 h and then treated for an additional 48 h. WST-1 reagent (Roche) was
directly added to the wells, and after incubation, absorbance was read at
450 nm using a Bio-Rad (Hercules, CA, USA) Microplate Reader Model 680.
The 670 nm reference absorbance and readings from blank wells contain-
ing only cell culture media and DMSO (vehicle) were subtracted from
experimental wells. Relative viability was determined by dividing
absorbance readings from vehicle-treated wells. For cell proliferation,
LNCaP cells were grown for 7 days in androgen depleted media. Cells were
trypsinized, stained with Trypan blue dye and viable cells were
enumerated using a hemocytometer. 1.5E5 cells per well were seeded
into 6-well plates in ARM. After 5 days, cells were similarly enumerated.
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Figure 8. C/EBPβ protects from chemotherapy following androgen deprivation. (a) LNCaP cells were cultured for 1 week in ARM or ADM, and
cell death was evaluated flow cytometric analysis of sub-G1 DNA content. (b) LNCaP shNTV or shCEBPB lines cultured in ADM were exposed to
bicalutamide at the indicated dose for 48 h and relative cell viability was evaluated by the WST-1 assay. The average cell viability from three
independent experiments is shown. (c) LNCaP lines harboring shNTV or shCEBPB were cultured for 7 days in ADM, re-plated in ARM, and
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the average percentage of dead cells from three independent experiments is shown. (d) Model of the regulation of C/EBPβ expression by AR.
Upon AR inhibition, C/EBPβ expression will increase to promote senescence, chemoresistence and emergence of CRPC.

Table 1. Primers used for ChIP and RNA analysis

Gene Forward sequence Reverse sequence

ChIP
CEBPB proximal GGCCGCCCTTATAAATAACC TATTAGTGAGGGGGCTGGTG
CEBPB upstream ATAATGGTGGCTGGCGATAG CCTTCCTCACTGCAAAATGG

Real-time PCR
TMPRSS2 AATCCCCATCCGGGACAGT AGGAGTCGCACTCTATCCCA
PSA GCAGCATTGAACCAGAGGAG AGAACTGGGGAGGCTTGAGT
ACTB GACCTGGCTGGCCGGGACCT GGCCATCTCTTGCTCGAAGT
GAPDH CCACCCATGGCAAATTCC GATGGGATTTCCATTGATGACA
CEBPB AAACTCTCTGCTTCTCCCTCTGC CTGACAGTTACACGTGGGTTGC
IL8 TCTGGCAACCCTAGTCTGCT GCTTCCACATGTCCTCACAA
BDNF GCGTGTGTGACAGTATTAGT CTGGGTAGTTCGGCACTGGG
CGA GCGGTGGAAGAGCCATCAT TCTGTGGCTTCACCACTTTTCTC
IGFBP3 GCCAGCGCTACAAAGTTGAC ATGTGTACACCCCTGGGACT
P16 INK4A CCGAATAGTTACGGTCGGAGG CACCAGCGTGTCCAGGAAG
P15 INK4B GAGGCGCGCGATCCAG CACCAGCGTGTCCAGGAAG
P21 CIP1/WAF1 ACTCTCAGGGTCGAAAACGG GATGTAGAGCGGGCCTTTGA

Abbreviation: ChIP, chromatin immunoprecipitation.
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SA-β-gal chromogenic assay
SA-β-gal-positive cells were stained using the chromogenic assay as
described.61 Five random fields of view were imaged on a Leica E600
(Leica, Buffalo Grove, IL, USA) microscope by brightfield microscopy at
× 200 magnification. Positive cells were identified as those containing blue
precipitate throughout the cytoplasm.

Immunofluorescent staining and heterochromatin foci
quantification
LNCaP cells were seeded onto poly-D-lysine-coated glass coverslips and
following treatment, were fixed in 4% paraformaldehyde. Cells were
washed and incubated in permeabilization buffer (TBS, 2% BSA, 0.5%
Triton-X 100, 0.1% sodium azide). After blocking, cells were incubated with
anti-di/trimethyl H3K9 (1:250, Cell Signaling Technology, Danvers, MA,
USA), washed and incubated with goat anti-mouse-Alexafluor 488-
conjugated secondary antibody (Life Technologies). Cells were washed
and mounted on glass slides for analysis by fluorescence microscopy.
Heterochromatin foci were imaged on a Leica E800 fluorescence
microscope with a CCD camera and imaged at × 630 magnification with
an oil immersion objective. Fluorescent micrographs of heterochromatin
foci from six to seven random fields of view were quantified using ImageJ
(National Institutes of Health, Bethesda, MD, USA). Intensely stained nuclei
with multiple fluorescent foci that colocalized with DAPI staining were
counted as positive cells containing heterochromatin foci.

Statistical analysis
Statistical comparison of two groups of samples was conducted using the
Student’s t-test. Comparisons of multiple groups of samples was
performed using the analysis of variance followed by multiple comparisons
with the Student’s t-test and the Holm-Bonferonni Correction (α/(n-k+1),
where n=number of comparisons and k= rank of P-value).
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